Astrophysics of Double Neutron Star Binaries

Chris Belczynski^{1,2,3}

¹Department of Astronomy New Mexico State University

²Tombaugh Fellow

³LIGO Scientific Collaboration

Sixth International LISA Symposium: June 22, 2006

Population Synthesis: The Method

Population synthesis is a Monte Carlo method which allows to evolve large stellar ensembles (both single and binary stars):

- start with initial conditions
- follow single and binary evolution
- calibrate results
- extract your population

In the end synthetic populations are generated:

- statistical analysis
- comparisons with observations
- finally, specific predictions

StarTrack: Single Star Evolution

Stars are evolved from the onset of nuclear burning.

Evolution depends on:

- initial mass (M_{init})
- chemical composition
- mixing (overshooting)
- stellar winds

... and in the end stars form compact remnants:

- white dwarfs ($M_{\rm init} \lesssim 8 {
 m M}_{\odot}$)
- neutron stars (8 $\lesssim M_{\rm init} \lesssim 20 {
 m M}_{\odot}$)
- black holes ($M_{\rm init} \gtrsim 20 {
 m M}_{\odot}$)

StarTrack: Binary Evolution

Evolution of binary systems is complex and some processes are still not fully understood. The input physics key ingredients are:

- tidal interactions
- mass transfer phases
 - rejuvenation
 - orbit evolution
 - common envelope
- supernova explosions
 - mass loss/natal kicks
 - full orbital solution
- ang. momentum losses
 - systemic mass loss
 - magnetic braking
 - gravitational radiation

NS Star Masses

Modeling:

- $\sim 1.35 M_{\odot}$: $M_{\rm zams} < 18 M_{\odot}$
- $\sim 1.8 M_{\odot}$: $M_{\rm zams} > 18 M_{\odot}$
- $\sim 1.26 M_{\odot}$: ECS NS $(M_{\rm zams} \sim 8 M_{\odot})$

Observations:

- $\sim 1.2 1.4 M_{\odot}$: double pulsars
- $\sim 1.9 M_{\odot}$: Vela X-1 pulsar
- $\sim 2.1 M_{\odot}$: PSR J0751+1807

What is maximum NS mass? (accretion, collapse to BH?)

NS-NS Formation Channels

Reanalysis of compact object formation led to a prediction of new NS-NS population:

- late evolutionary stages ->
- helium star expansion ->
- extra mass transfer episode ->
- if stable RLOF: Classical II if CE: New

New (versus Classical) NS-NS binaries:

- orbital periods: < 2 hr (\sim 2 100 hr)
- merger times: < 1 Myr (\sim 1 Gyr)
- merger sites: birth place (far out)

Belczynski, & Kalogera 2001 Belczynski, Bulik & Kalogera 2002 Belczynski, Bulik & Rudak 2002 Perna & Belczynski 2002 Ivanova, Belczynski, Kalogera, Rasio & Taam 2003 Belczynski, Perna, Bulik, Kalogera, Ivanova & Lamb 2006

NS-NS: Formation -> Present

Merger times at formation ->

Systems evolve due to emission of GR only:

- orbital decay
- circularization

Present population contains only:

- ullet \sim 20% of systems that have formed
- the long-lived systems (short-lived systems have merged)

Number of Galactic NS-NS Binaries

- Galactic disk stellar population ($f_0 = 1.0$) $M_{\rm MW} \sim 1.5 \times 10^{11} M_{\odot}$ (2.5 × 10¹¹ stars)
- binary stars $(f_1 = 0.5)$
- massive binaries ($f_2 = 0.003$) ($M_a > 5M_{\odot}, M_b > 4M_{\odot}$)
- all NS-NS (formation) $(f_3 = 0.002)$
- Current NS-NS population ($f_4 = 0.229$)

$$1 - 10^{-4}$$
 Hz (<5.7hr)
 $(f_5 = 0.031)$
 $f_{tot} = 2 \times 10^{-8}$
 $N_{NS-NS} = 6000$

$$1 - 5 \times 10^{-5}$$
 Hz (<11hr)
 $(f_5 = 0.087)$
 $f_{tot} = 6 \times 10^{-8}$
 $N_{NS-NS} = 16000$

$$\begin{array}{l} 1-10^{-5} \ Hz \ (<\!\!57hr) \\ \textit{(f}_5 = 0.404) \\ \textit{f}_{tot} = 29 \times 10^{-8} \\ \textit{N}_{NS-NS} = 70 \ 000 \end{array}$$

NS-NS: very rare systems, but still many predicted in Galaxy at present!

Observable NS-NS Population

- start with 16 000 NS-NS
- put them in Galactic disk
- follow their trajectories (birth SNe kicks)
- check current positions
- calculate distance from Earth

 \sim 20 NS-NS within 1 kpc \sim 100 NS-NS within 2 kpc

NS-NS with $P_{\rm orb} < 0^{hr}.56$ (f > 1 mHz): ~ 15 NS-NS within 20 kpc

not many, but.....

Potential LISA Science

better understanding of NS properties:

- periods: progenitor evolution
- positions: spatial distr./kicks
- distances: NS masses

Improvement on NS-NS merger rates:

- Galactic merger rates
 - empirical: $\sim 3 300 \; Myr^{-1}$
 - modeling: ~ 10 − 60 Myr⁻¹
- GR detection (LIGO, GEO, VIRGO)
- short/hard GRB progenitors? (SWIFT, HETE-II)

Swift satellite: GRB localization.

Short Gamma-ray Bursts: Observations

Short-hard GRBs:

- several found within z<0.5
- in old ellipticals
- in young star-forming galaxies
- both low- and high-mass hosts

Progenitor issues/problems:

- release of 10⁴⁹ erg within a sec?!
- what are their progenitors?
 - NS-NS/BH-NS mergers
 - magnetars
 - accretion induced collapse

homogeneous progenitor population?!

why not found at higher redshifts?!

Short Gamma-ray Bursts: Modeling

New NS-NS II Classical NS-NS:

- all redshifts II low-intermediate
- in starbursts II in ellipticals
- inside/outskirt II outskirt/outside
 (Mixed populations in spiral hosts)

Open questions:

- if more GRB found in small ellipt. lower natal kicks in binaries?
- if no GRB found at z ~ 3 − 5 no New NS-NS: no CE survival?
- if no GRB found at z ~ 1 − 2 how do we explain Galactic NS-NS?!

Short Gamma-ray Bursts: Conclusions

- Compact object mergers can explain
 - presence of GRBs in both: old and young galaxies
 - their locations with respect to hosts (lower kicks?)
- Potential problem with the lack of higher redshift GRBs
 - unless some are already observed (e.g., GRB 060121, z ~ 1.7 − 4.6)
 - any bias against detecting them at higher z? (not upto $z \sim 1 2$)
 - or some process preventing NS-NS formation at high z? (but what?!)

or if nothing of the above works, NS-NS is not a GRB progenitor.....

Summary

NS-NS are relatively small Galactic population. Only \sim tens of close (to Earth) NS-NS systems as compared to hundreds of NS-WD and thousands of WD-WD binaries.

However, even with tens of detections we increase statistics for NS-NS binaries by an order of magnitude. And we improve:

- understanding of NS-NS formation physics
 - NS masses (accretion/recycling)
 - progenitor evolution (e.g., kicks)
- estimates of merger rates
 - ground based GR detection prospects?
 - short-hard GRB progenitors?

Finally, BH-NS and BH-BH systems are not predicted to form in numbers sufficiently large to grant detection with LISA.

